Automatic Continuity of Higher Derivations
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $\mathcal A$ and $\mathcal B$ be two algebras. A sequence $\{d_n\}$ of linear mappings from $\mathcal A$ into $\mathcal B$ is called a higher derivation if $d_n(a_1a_2)=\sum_{k=0}^n d_k(a_1)d_{n-k}(a_2)$ for each $a_1,a_2\in{\mathcal A}$ and each nonnegative integer $n$. In this paper, we show that if $\{d_n\}$ is a higher derivation from $\mathcal A$ into $\mathcal B$ such that $d_0$ is onto and $\ker(d_0)\subseteq\ker(d_n)~(n\in\mathbb{N})$, then there is a sequence $\{\delta_n\}$ of derivations on ${\mathcal B}$ such that $d_n=\sum_{i=1}^n\left(\sum_{\sum_{j=1}^ir_j=n}\left(\prod_{j=1}^i\frac1{r_j+\ldots+r_i}\right) \delta_{r_1}\ldots\delta_{r_i}d_0\right).$ As a corollary we prove that a higher derivation $\{d_n\}$ from a Banach algebra into a semisimple Banach algebra is continuous provided that $d_0$ is onto and $\ker(d_0)\subseteq\ker(d_n)~(n\in\mathbb{N})$. We also deduce that if $\mathcal A$ is a semisimple Jordan Banach algebra and $\{d_n\}$ is a higher derivation on $\mathcal A$ with $d_0(\mathcal A)=\mathcal A$ and $\ker(d_0)\subseteq\ker(d_n)~(n\in\mathbb{N})$ then $\{d_n\}$ is continuous.
Classification : 46H40, 16W25, 47B47, 46L57.
@article{BMMS_2012_35_4_a3,
     author = {Madjid Mirzavaziri and Elahe Omidvar Tehrani},
     title = {Automatic {Continuity} of {Higher} {Derivations}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a3/}
}
TY  - JOUR
AU  - Madjid Mirzavaziri
AU  - Elahe Omidvar Tehrani
TI  - Automatic Continuity of Higher Derivations
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a3/
ID  - BMMS_2012_35_4_a3
ER  - 
%0 Journal Article
%A Madjid Mirzavaziri
%A Elahe Omidvar Tehrani
%T Automatic Continuity of Higher Derivations
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a3/
%F BMMS_2012_35_4_a3
Madjid Mirzavaziri; Elahe Omidvar Tehrani. Automatic Continuity of Higher Derivations. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a3/