Composition Operators from Zygmund Spaces to Bloch Spaces in the Unit Ball
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $H(B)$ denote the space of all holomorphic functions on the unit ball $B\subset \mathbb C^n$. Let $\varphi=(\varphi_1,\ldots,\varphi_n)$ be a holomorphic self-map of $B$. The composition operator $C_\varphi$ on $H(B)$ is defined as follows $( C_\varphi f)(z) =(f\circ \varphi)(z).$ In this paper we investigate the boundedness and compactness of the composition operator $C_\varphi$ from Zygmund spaces to Bloch spaces in the unit ball.
Classification :
Primary: 47B33; Secondary: 32A18.
@article{BMMS_2012_35_4_a11,
author = {Xiangling Zhu},
title = {Composition {Operators} from {Zygmund} {Spaces} to {Bloch} {Spaces} in the {Unit} {Ball}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {4},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a11/}
}
Xiangling Zhu. Composition Operators from Zygmund Spaces to Bloch Spaces in the Unit Ball. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a11/