Composition Operators from Zygmund Spaces to Bloch Spaces in the Unit Ball
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $H(B)$ denote the space of all holomorphic functions on the unit ball $B\subset \mathbb C^n$. Let $\varphi=(\varphi_1,\ldots,\varphi_n)$ be a holomorphic self-map of $B$. The composition operator $C_\varphi$ on $H(B)$ is defined as follows $( C_\varphi f)(z) =(f\circ \varphi)(z).$ In this paper we investigate the boundedness and compactness of the composition operator $C_\varphi$ from Zygmund spaces to Bloch spaces in the unit ball.
Classification : Primary: 47B33; Secondary: 32A18.
@article{BMMS_2012_35_4_a11,
     author = {Xiangling Zhu},
     title = {Composition {Operators} from {Zygmund} {Spaces} to {Bloch} {Spaces} in the {Unit} {Ball}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a11/}
}
TY  - JOUR
AU  - Xiangling Zhu
TI  - Composition Operators from Zygmund Spaces to Bloch Spaces in the Unit Ball
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a11/
ID  - BMMS_2012_35_4_a11
ER  - 
%0 Journal Article
%A Xiangling Zhu
%T Composition Operators from Zygmund Spaces to Bloch Spaces in the Unit Ball
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a11/
%F BMMS_2012_35_4_a11
Xiangling Zhu. Composition Operators from Zygmund Spaces to Bloch Spaces in the Unit Ball. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 4. http://geodesic.mathdoc.fr/item/BMMS_2012_35_4_a11/