On One Parameter Semigroup of Self Mappings Uniformly Satisfying Expansive Kannan Condition
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The aim of this paper is to prove existence results on fixed points for asymptotically regular uniformly expansive Kannan semigroup of selfmappings (with constant $\beta \sqrt{2}$) defined on metric spaces equipped with uniform normal structure which further enjoys a kind of intersection property. As Banach spaces also fall in the class of metric spaces with uniform normal, therefore our results can be viewed as metric versions of some earlier results due to Kannan originally proved in reflexive Banach spaces besides generalizing certain previously known results due to Beg and Azam proved in convex metric spaces.
Classification : 47H09, 47H10.
@article{BMMS_2012_35_3_a8,
     author = {M. Imdad and Ahmed H. Soliman},
     title = {On {One} {Parameter} {Semigroup} of {Self} {Mappings} {Uniformly} {Satisfying} {Expansive} {Kannan} {Condition}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a8/}
}
TY  - JOUR
AU  - M. Imdad
AU  - Ahmed H. Soliman
TI  - On One Parameter Semigroup of Self Mappings Uniformly Satisfying Expansive Kannan Condition
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a8/
ID  - BMMS_2012_35_3_a8
ER  - 
%0 Journal Article
%A M. Imdad
%A Ahmed H. Soliman
%T On One Parameter Semigroup of Self Mappings Uniformly Satisfying Expansive Kannan Condition
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a8/
%F BMMS_2012_35_3_a8
M. Imdad; Ahmed H. Soliman. On One Parameter Semigroup of Self Mappings Uniformly Satisfying Expansive Kannan Condition. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a8/