An Integral-Type Operator from $H^\infty$ to Zygmund-Type Spaces
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $g \in H(\mathbb{D})$, $n$ be a nonnegative integer and $\varphi$ be an analytic self-map of $\mathbb{D}$. We study the boundedness and compactness of the integral operator $C^n_{\varphi,g} $ defined by \begin{align} (C^n_{\varphi,g} f)(z)=\int_0^z f^{(n)} ( \varphi(\xi) )g(\xi) d\xi, \quad z\in \mathbb D, \ f\in H(\mathbb D),\nonumber \end{align} from $H^\infty$ to Zygmund-type spaces on the unit disk.
Classification : Primary: 47B38; Secondary: 30H05.
@article{BMMS_2012_35_3_a7,
     author = {Xiangling Zhu},
     title = {An {Integral-Type} {Operator} from $H^\infty$ to {Zygmund-Type} {Spaces}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a7/}
}
TY  - JOUR
AU  - Xiangling Zhu
TI  - An Integral-Type Operator from $H^\infty$ to Zygmund-Type Spaces
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a7/
ID  - BMMS_2012_35_3_a7
ER  - 
%0 Journal Article
%A Xiangling Zhu
%T An Integral-Type Operator from $H^\infty$ to Zygmund-Type Spaces
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a7/
%F BMMS_2012_35_3_a7
Xiangling Zhu. An Integral-Type Operator from $H^\infty$ to Zygmund-Type Spaces. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a7/