Oscillation of a Certain Class of Third Order Nonlinear Difference Equations
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we are concerned with oscillation of the nonlinear difference equation $\Delta (c_{n}\left[ \Delta (d_{n}\Delta x_{n})\right] ^{\gamma })+q_{n}f(x_{g(n)})=0,\ n\geq n_{0},$ where $\gamma >0$ is the quotient of odd positive integers, $c_{n}$, $d_{n}$ and $q_{n}$ are positive sequences of real numbers, $g(n)$ is a sequence of nonnegative integers and $f\in C(\mathbf{R,R)}$ such that $uf(u)>0$ for $% u\neq 0.$ We establish some new sufficient conditions for oscillation by employing the Riccati substitution and the analysis of the associated Riccati difference inequality. Our results extend and improve some previously obtained ones. Some examples are considered to illustrate the main results.
Classification : 34K11, 39A10.
@article{BMMS_2012_35_3_a5,
     author = {S. H. Saker},
     title = {Oscillation of a {Certain} {Class} of {Third} {Order} {Nonlinear} {Difference} {Equations}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a5/}
}
TY  - JOUR
AU  - S. H. Saker
TI  - Oscillation of a Certain Class of Third Order Nonlinear Difference Equations
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a5/
ID  - BMMS_2012_35_3_a5
ER  - 
%0 Journal Article
%A S. H. Saker
%T Oscillation of a Certain Class of Third Order Nonlinear Difference Equations
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a5/
%F BMMS_2012_35_3_a5
S. H. Saker. Oscillation of a Certain Class of Third Order Nonlinear Difference Equations. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a5/