Equivalence Classes of Linear Mappings on $\mathcal B(\mathcal M)$
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $\mathcal M$ be a Hilbert $C^*$-module over the $C^*$-algebra $\mathcal A$, $\mathcal B(\mathcal M)$ the $C^*$-algebra of all adjointable operators on $\mathcal M$, $\mathcal L(\mathcal B(\mathcal M))$ the algebra of all linear operators on $\mathcal B(\mathcal M)$. For a property $\mathcal P$ on $\mathcal B(\mathcal M)$ and $\phi_{1},\phi_{2}\in \mathcal L(\mathcal B(\mathcal M))$ we say that $\phi_{1}{\sim}_{_{\mathcal P}} \phi_{2}$, whenever for every $T\in\mathcal B(\mathcal M)$, $\phi_{1}(T) $ has property $\mathcal P$ if and only if $\phi_{2}(T)$ has this property. Each property $\mathcal P$ produces an equivalence relation on $\mathcal L(\mathcal B(\mathcal M))$. If $\mathcal I$ denotes the identity map on $\mathcal B(\mathcal M)$ it is clear that $\phi{\sim}_{_{\mathcal P}} \mathcal I$ means that $\phi$ preserves and reflects property $\mathcal P$. We are going to study the equivalence classes with respect to different properties such as being $\mathcal A$-Fredholm, semi-$\mathcal A$-Fredholm, compact and generalized invertible.
Classification : 47B48, 46L08, 47A53.
@article{BMMS_2012_35_3_a3,
     author = {S. Hejazian and T. Aghasizadeh},
     title = {Equivalence {Classes} of {Linear} {Mappings} on $\mathcal B(\mathcal M)$},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a3/}
}
TY  - JOUR
AU  - S. Hejazian
AU  - T. Aghasizadeh
TI  - Equivalence Classes of Linear Mappings on $\mathcal B(\mathcal M)$
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a3/
ID  - BMMS_2012_35_3_a3
ER  - 
%0 Journal Article
%A S. Hejazian
%A T. Aghasizadeh
%T Equivalence Classes of Linear Mappings on $\mathcal B(\mathcal M)$
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a3/
%F BMMS_2012_35_3_a3
S. Hejazian; T. Aghasizadeh. Equivalence Classes of Linear Mappings on $\mathcal B(\mathcal M)$. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a3/