Some Generalizations of Small Injective Modules
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $R$ be a ring. Let $m$ and $n$ be positive integers, a right $R$-module $M$ is called {\it $(m, n)$-small injective}, if every right $R$-homomorphism from an $n$-generated submodule of $J^m$ to $M$ extends to one from $R^m$ to $M$. A ring $R$ is called right $(m, n)$-small injective if the right $R$ module $R_R$ is $(m, n)$-small injective. In this paper, we give some properties of $(m, n)$-small injective modules and right $(m, n)$-small injective rings.
Classification :
Primary: 16D50, 16D70, 16D80.
@article{BMMS_2012_35_3_a2,
author = {Truong Cong Quynh},
title = {Some {Generalizations} of {Small} {Injective} {Modules}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a2/}
}
Truong Cong Quynh. Some Generalizations of Small Injective Modules. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a2/