The Borel Radius and the $S$ Radius of the K-Quasimeromorphic Mapping in the Unit Disc
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
By using Ahlfors' theory of covering surface, a fundamental inequality for the K-quasimeromorphic mapping in the unit disc is established. As an application, some results on the Borel radius and the $S$ radius dealing with multiple values of the K-quasimeromorphic mapping in the unit disc are obtained.
Classification :
30C62, 30D60, 30D35.
@article{BMMS_2012_35_3_a19,
author = {Yinying Kong and Huilin Gan},
title = {The {Borel} {Radius} and the $S$ {Radius} of the {K-Quasimeromorphic} {Mapping} in the {Unit} {Disc}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a19/}
}
Yinying Kong; Huilin Gan. The Borel Radius and the $S$ Radius of the K-Quasimeromorphic Mapping in the Unit Disc. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a19/