The Borel Radius and the $S$ Radius of the K-Quasimeromorphic Mapping in the Unit Disc
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

By using Ahlfors' theory of covering surface, a fundamental inequality for the K-quasimeromorphic mapping in the unit disc is established. As an application, some results on the Borel radius and the $S$ radius dealing with multiple values of the K-quasimeromorphic mapping in the unit disc are obtained.
Classification : 30C62, 30D60, 30D35.
@article{BMMS_2012_35_3_a19,
     author = {Yinying Kong and Huilin Gan},
     title = {The {Borel} {Radius} and the $S$ {Radius} of the {K-Quasimeromorphic} {Mapping} in the {Unit} {Disc}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a19/}
}
TY  - JOUR
AU  - Yinying Kong
AU  - Huilin Gan
TI  - The Borel Radius and the $S$ Radius of the K-Quasimeromorphic Mapping in the Unit Disc
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a19/
ID  - BMMS_2012_35_3_a19
ER  - 
%0 Journal Article
%A Yinying Kong
%A Huilin Gan
%T The Borel Radius and the $S$ Radius of the K-Quasimeromorphic Mapping in the Unit Disc
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a19/
%F BMMS_2012_35_3_a19
Yinying Kong; Huilin Gan. The Borel Radius and the $S$ Radius of the K-Quasimeromorphic Mapping in the Unit Disc. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a19/