A Characterization of Graphs with Equal Domination Number and Vertex Cover Number
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $\gamma(G)$ and $\beta(G)$ denote the domination number and the vertex cover number of a graph $G$, respectively. We use $\mathcal{G}_{\gamma=\beta}$ for the set of graphs which have equal domination number and vertex cover number. In this short note, we present a characterization for the class $\mathcal{G}_{\gamma=\beta}$.
Classification :
05C69, 05C70.
@article{BMMS_2012_35_3_a17,
author = {Yunjian Wu and Qinglin Yu},
title = {A {Characterization} of {Graphs} with {Equal} {Domination} {Number} and {Vertex} {Cover} {Number}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a17/}
}
Yunjian Wu; Qinglin Yu. A Characterization of Graphs with Equal Domination Number and Vertex Cover Number. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a17/