On Linear Preservers of lgw-Majorization on $\mathbf{M}_{{n,m}}$
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $\mathbf{M}_{n,m}$ be the set of all $n\times m$ matrices with entries in $\mathbb{F}$, where $\mathbb{F}$ is the field of real or complex numbers. For $A, B\in \mathbf{M}_{n,m}$, we say that $B$ is lgw-majorized (left generalized weakly majorized) by $A$ if there exists an $n\times n$ g-row stochastic (generalized row stochastic) matrix $R$ such that $B=RA$. In this paper, we characterize all linear operators that strongly preserve lgw-majorization on $\mathbf{M}_{n,m}$ and all linear operators that strongly preserve left weak matrix majorization on $ \mathbf{M}_{n}$.
Classification : Primary: 15A03, 15A04, 15A51.
@article{BMMS_2012_35_3_a13,
     author = {A. Armandnejad and A. Salemi},
     title = {On {Linear} {Preservers} of {lgw-Majorization} on $\mathbf{M}_{{n,m}}$},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a13/}
}
TY  - JOUR
AU  - A. Armandnejad
AU  - A. Salemi
TI  - On Linear Preservers of lgw-Majorization on $\mathbf{M}_{{n,m}}$
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a13/
ID  - BMMS_2012_35_3_a13
ER  - 
%0 Journal Article
%A A. Armandnejad
%A A. Salemi
%T On Linear Preservers of lgw-Majorization on $\mathbf{M}_{{n,m}}$
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a13/
%F BMMS_2012_35_3_a13
A. Armandnejad; A. Salemi. On Linear Preservers of lgw-Majorization on $\mathbf{M}_{{n,m}}$. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a13/