Subclasses of Multivalent Harmonic Mappings Defined by Convolution
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A new subclass of multivalent harmonic functions defined by convolution is introduced in this paper. The subclass generates known subclasses of multivalent harmonic functions, and thus provides a unified treatment in the study of these subclasses. Sufficient coefficient conditions are obtained that are also shown to be necessary when the functions have negative coefficients. Growth estimates and extreme points are also determined. In addition conditions for starlikeness of the Dziok-Srivastava linear operator involving the generalized hypergeometric functions are discussed.
Classification : Primary 30C45; Secondary 30C50.
@article{BMMS_2012_35_3_a10,
     author = {K. G. Subramanian and B. Adolf Stephen and S. K. Lee},
     title = {Subclasses of {Multivalent} {Harmonic} {Mappings} {Defined} by {Convolution}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a10/}
}
TY  - JOUR
AU  - K. G. Subramanian
AU  - B. Adolf Stephen
AU  - S. K. Lee
TI  - Subclasses of Multivalent Harmonic Mappings Defined by Convolution
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a10/
ID  - BMMS_2012_35_3_a10
ER  - 
%0 Journal Article
%A K. G. Subramanian
%A B. Adolf Stephen
%A S. K. Lee
%T Subclasses of Multivalent Harmonic Mappings Defined by Convolution
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a10/
%F BMMS_2012_35_3_a10
K. G. Subramanian; B. Adolf Stephen; S. K. Lee. Subclasses of Multivalent Harmonic Mappings Defined by Convolution. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2012_35_3_a10/