Radius of Univalence of Certain Combination of Univalent and Analytic Functions
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $\mathcal{A}$ denote the family of all analytic functions $f$ in the unit disk $D$ with the normalization $f(0)=0= f'(0)-1$. Define $\mathcal{S} = \{ f \in \mathcal{A}: \, f ~\mbox{is univalent in } D \}$, $\mathcal{U} = \{ f \in \mathcal{A} :\, \big |f'(z)\left (z/f(z) \right )^{2}-1\big | 1 ~\mbox{ for $z\in D$} \}$, and $ \mathcal{P}(1/2)= \{f\in \mathcal{A}:\, {\rm Re\,}(f(z)/z)>1/2$ $ ~\mbox{ for $z\in D$} \}.$ In this paper, we determine the radius of univalency of $F(z)=zf(z)/g(z)$ whenever $f\in \mathcal{ S} $ or $\mathcal{U}$, and $g\in \mathcal{S} $ or $\mathcal{P}(1/2)$. Based on our investigations, we conjecture that $F$ is univalent in the disk $|z|1/3$ whenever $f\in \mathcal{S}$ and $g\in\mathcal{ P}(1/2)$. We also conjecture that $F$ is univalent in the disk $|z|\sqrt{5}-2$ whenever both $f$ and $g$ are in $\mathcal{S}$.
Classification : 30C45.
@article{BMMS_2012_35_2_a8,
     author = {M. Obradovic and S. Ponnusamy and N. Tuneski},
     title = {Radius of {Univalence} of {Certain} {Combination} of {Univalent} and {Analytic} {Functions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/}
}
TY  - JOUR
AU  - M. Obradovic
AU  - S. Ponnusamy
AU  - N. Tuneski
TI  - Radius of Univalence of Certain Combination of Univalent and Analytic Functions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/
ID  - BMMS_2012_35_2_a8
ER  - 
%0 Journal Article
%A M. Obradovic
%A S. Ponnusamy
%A N. Tuneski
%T Radius of Univalence of Certain Combination of Univalent and Analytic Functions
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/
%F BMMS_2012_35_2_a8
M. Obradovic; S. Ponnusamy; N. Tuneski. Radius of Univalence of Certain Combination of Univalent and Analytic Functions. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/