Radius of Univalence of Certain Combination of Univalent and Analytic Functions
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $\mathcal{A}$ denote the family of all analytic functions $f$ in the unit disk $D$ with the normalization $f(0)=0= f'(0)-1$. Define $\mathcal{S} = \{ f \in \mathcal{A}: \, f ~\mbox{is univalent in } D \}$, $\mathcal{U} = \{ f \in \mathcal{A} :\, \big |f'(z)\left (z/f(z) \right )^{2}-1\big | 1 ~\mbox{ for $z\in D$} \}$, and $ \mathcal{P}(1/2)= \{f\in \mathcal{A}:\, {\rm Re\,}(f(z)/z)>1/2$ $ ~\mbox{ for $z\in D$} \}.$ In this paper, we determine the radius of univalency of $F(z)=zf(z)/g(z)$ whenever $f\in \mathcal{ S} $ or $\mathcal{U}$, and $g\in \mathcal{S} $ or $\mathcal{P}(1/2)$. Based on our investigations, we conjecture that $F$ is univalent in the disk $|z|1/3$ whenever $f\in \mathcal{S}$ and $g\in\mathcal{ P}(1/2)$. We also conjecture that $F$ is univalent in the disk $|z|\sqrt{5}-2$ whenever both $f$ and $g$ are in $\mathcal{S}$.
Classification :
30C45.
@article{BMMS_2012_35_2_a8,
author = {M. Obradovic and S. Ponnusamy and N. Tuneski},
title = {Radius of {Univalence} of {Certain} {Combination} of {Univalent} and {Analytic} {Functions}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/}
}
TY - JOUR AU - M. Obradovic AU - S. Ponnusamy AU - N. Tuneski TI - Radius of Univalence of Certain Combination of Univalent and Analytic Functions JO - Bulletin of the Malaysian Mathematical Society PY - 2012 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/ ID - BMMS_2012_35_2_a8 ER -
M. Obradovic; S. Ponnusamy; N. Tuneski. Radius of Univalence of Certain Combination of Univalent and Analytic Functions. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a8/