Inversion of the Dunkl-Hermite Semigroup
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $\{e^{-c\mathcal{H}^\alpha}/\Re c\geq 0\}$ be the Dunkl-Hermite semigroup on the real line $\mathbb{R}$, defined by

$[e^{-c\mathcal{H}^\alpha}f](x)=\int_\mathbb{R}\mathcal{K}_c^\alpha(x,\xi)f(\xi)d\mu_\alpha(\xi)\;, \quad x\in\mathbb{R}\;,$

where $\mathcal{K}_c^\alpha(x,\xi)=\sum_{n=0}^\infty e^{-cn} H_n^\alpha(x)H_n^\alpha(\xi)$. Here, $H_n^\alpha, n\in \mathbb{N}$, are the Dunkl-Hermite polynomials which are the eigenfunctions of the operator $D_\alpha^2-2x{d}/{dx}$, $D_\alpha$ being the Dunkl operator on the real line. For $\Re c>0$, we give a representation for inverting the semigroup. Next, we extend $e^{-c\mathcal{H}^\alpha}$ and we give an integral representation of it for $\Re c0$. Moreover, in this last case, we characterize the domain in which $e^{-c\mathcal{H}^\alpha}$ is well defined.
Classification : 47D03, 47B38, 46E20, 33C45.
@article{BMMS_2012_35_2_a5,
     author = {N\'ejib Ben Salem and Walid Nefzi},
     title = {Inversion of the {Dunkl-Hermite} {Semigroup}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a5/}
}
TY  - JOUR
AU  - Néjib Ben Salem
AU  - Walid Nefzi
TI  - Inversion of the Dunkl-Hermite Semigroup
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a5/
ID  - BMMS_2012_35_2_a5
ER  - 
%0 Journal Article
%A Néjib Ben Salem
%A Walid Nefzi
%T Inversion of the Dunkl-Hermite Semigroup
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a5/
%F BMMS_2012_35_2_a5
Néjib Ben Salem; Walid Nefzi. Inversion of the Dunkl-Hermite Semigroup. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a5/