On the Sylow Normalizers of Some Simple Classical Groups
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G$ be a finite group and $\pi(G)$ be the set of prime divisors of the order of $G$. For $t \in \pi(G)$ denote by $n_t(G)$ the order of a normalizer of $t$-Sylow subgroup of $G$ and put $n(G) = \{n_t(G):t \in \pi(G)\}$. In this paper, we give an answer to the following problem, for the groups of Lie type $B_n$, $C_n$ and $D_n$: "Let L be a finite non-abelian simple group and $G$ be a finite group with $n(L) = n(G)$. Is it true that $L\cong G$?" In this paper, we find the first examples of non-abelian finite simple groups which are not isomorphic and they have the same set of orders of Sylow normalizers and hence, we show that the question above is not correct always. Let $\mathcal{A}$ be the set of prime numbers of order $2n$, $2(n-1)$ and $2(n-2)$ mod $q$. The latter condition is necessary if $n \geq 5$. Also, we show that $D_{n+1}(q)$ is determined uniquely by its order and $\{n_t(D_{n+1}(q)): t \in \mathcal{A} \cup \{2\}\}$ and if $n =2$ or $q \not\equiv \pm 1~({\rm mod}~8) $, then $B_n(q)$ and $C_n(q)$ are characterizable by their orders and orders of $t$-Sylow normalizers, where $t \in \mathcal{A} \cup \{2\}$. If $n \geq 3$ and $q \equiv \pm 1~({\rm mod}~8) $, then $B_n(q)$ and $C_n(q)$ are $2$-characterizable by their orders and the orders of $t$-Sylow normalizers, where $t \in \mathcal{A} \cup \{2\}$.
Classification : 20D06, 20D20, 20G40, 20C33.
@article{BMMS_2012_35_2_a19,
     author = {N. Ahanjideh and A. Iranmanesh},
     title = {On the {Sylow} {Normalizers} of {Some} {Simple} {Classical} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a19/}
}
TY  - JOUR
AU  - N. Ahanjideh
AU  - A. Iranmanesh
TI  - On the Sylow Normalizers of Some Simple Classical Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a19/
ID  - BMMS_2012_35_2_a19
ER  - 
%0 Journal Article
%A N. Ahanjideh
%A A. Iranmanesh
%T On the Sylow Normalizers of Some Simple Classical Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a19/
%F BMMS_2012_35_2_a19
N. Ahanjideh; A. Iranmanesh. On the Sylow Normalizers of Some Simple Classical Groups. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a19/