Normality Criteria for Families of Meromorphic Function Concerning Shared Values
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $k$ be a positive integer and let $\mathcal{F}$ be a family of meromorphic functions in the plane domain $D$ all of whose zeros with multiplicity at least $k$. Let $P=a_pz^p+\cdots+a_2z^2+z$ be a polynomial, $a_p,a_2\neq0$ and $p=\deg(P)\geq k+2$. If, for each $f,g\in \mathcal{F}$, $P(f)G(f)$ and $P(g)G(g)$ share a non-zero constant $b$ in $D$, where $G(f)=f^{(k)}+H(f)$ be a differential polynomial of $f$ satisfying $\frac{w}{\deg}|_H\leq \frac{k}{l+1}+1$ or $w(H)-\deg(H)$, then $\mathcal{F}$ is normal in $D$.
Classification :
30D35, 30D45.
@article{BMMS_2012_35_2_a18,
author = {Jianming Qi and Jie Ding and Lianzhong Yang},
title = {Normality {Criteria} for {Families} of {Meromorphic} {Function} {Concerning} {Shared} {Values}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a18/}
}
TY - JOUR AU - Jianming Qi AU - Jie Ding AU - Lianzhong Yang TI - Normality Criteria for Families of Meromorphic Function Concerning Shared Values JO - Bulletin of the Malaysian Mathematical Society PY - 2012 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a18/ ID - BMMS_2012_35_2_a18 ER -
Jianming Qi; Jie Ding; Lianzhong Yang. Normality Criteria for Families of Meromorphic Function Concerning Shared Values. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a18/