Hypersurfaces with Constant $k$-th Mean Curvature in a Unit Sphere and Euclidean Space
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $M^n$ be an $n (n\geq3)$-dimensional complete connected and oriented hypersurface in a unit sphere $S^{n+1}(1)$ or Euclidean space $\mathbf{R}^{n+1}$ with constant $k$-th mean curvature $H_k>0(k n)$ and with two distinct principal curvatures $\lambda$ and $\mu$ such that the multiplicity of $\lambda$ is $n-1$. We show that (1) in the case of $S^{n+1}(1)$, if $k\geq3$ and $|h|^2\leq (n-1)t_2^{2/k}+t_2^{-2/k}$, then $M^n$ is isometric to the Riemannian product $S^1(\sqrt{1-a^2})\times S^{n-1}(a)$, where $t_2$ is the positive real root of the function $ P_{H_k}(t)=kt^\frac{k-2}{k}-(n-k)t+nH_k$; (2) in the case of $\mathbf{R}^{n+1}$, if $|h|^2\leq(n-1)(nH_k/(n-k))^\frac{2}{k}$, then $M^n$ is isometric to the Riemannian product $S^{n-1}(a)\times \mathbf{R}$. We extend some recent results to the case $k\geq3$.
Classification :
53C42, 53A10.
@article{BMMS_2012_35_2_a17,
author = {Shichang Shu and Annie Yi Han},
title = {Hypersurfaces with {Constant} $k$-th {Mean} {Curvature} in a {Unit} {Sphere} and {Euclidean} {Space}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a17/}
}
TY - JOUR AU - Shichang Shu AU - Annie Yi Han TI - Hypersurfaces with Constant $k$-th Mean Curvature in a Unit Sphere and Euclidean Space JO - Bulletin of the Malaysian Mathematical Society PY - 2012 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a17/ ID - BMMS_2012_35_2_a17 ER -
Shichang Shu; Annie Yi Han. Hypersurfaces with Constant $k$-th Mean Curvature in a Unit Sphere and Euclidean Space. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a17/