About a Conjecture on the Randi$\acute{c}$ Index of Graphs
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

For an edge $uv$ of a graph $G$, the weight of the edge $e=uv$ is defined by $w(e)=1/\sqrt{d(u)d(v)}$. Then

$R(G)=\sum_{uv\in E(G)}1/\sqrt{d(u)d(v)}=\sum_{e\in E(G)}w(e)$

is called the Randi$\acute{c}$ index of $G$. If $G$ is a connected graph, then

${\rm rad}(G)=\min_{x}\max_{y} d(x,y)$

is called the radius of $G$, where $d(x,y)$ is the distance between two vertices $x,y$. In $
Classification : 05C75, 05C90.
@article{BMMS_2012_35_2_a15,
     author = {Liancui Zuo},
     title = {About a {Conjecture} on the {Randi}$\acute{c}$ {Index} of {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a15/}
}
TY  - JOUR
AU  - Liancui Zuo
TI  - About a Conjecture on the Randi$\acute{c}$ Index of Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a15/
ID  - BMMS_2012_35_2_a15
ER  - 
%0 Journal Article
%A Liancui Zuo
%T About a Conjecture on the Randi$\acute{c}$ Index of Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a15/
%F BMMS_2012_35_2_a15
Liancui Zuo. About a Conjecture on the Randi$\acute{c}$ Index of Graphs. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a15/