About a Conjecture on the Randi$\acute{c}$ Index of Graphs
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
For an edge $uv$ of a graph $G$, the weight of the edge $e=uv$ is defined by $w(e)=1/\sqrt{d(u)d(v)}$. Then
is called the Randi$\acute{c}$ index of $G$. If $G$ is a connected graph, then
is called the radius of $G$, where $d(x,y)$ is the distance between two vertices $x,y$. In $
| $R(G)=\sum_{uv\in E(G)}1/\sqrt{d(u)d(v)}=\sum_{e\in E(G)}w(e)$ |
| ${\rm rad}(G)=\min_{x}\max_{y} d(x,y)$ |
Classification :
05C75, 05C90.
@article{BMMS_2012_35_2_a15,
author = {Liancui Zuo},
title = {About a {Conjecture} on the {Randi}$\acute{c}$ {Index} of {Graphs}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a15/}
}
Liancui Zuo. About a Conjecture on the Randi$\acute{c}$ Index of Graphs. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a15/