Existence of Nonconstant Periodic Solutions for a Nonlinear Discrete System Involving the $p$-Laplacian
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, we study the following nonlinear discrete system involving the $p$-Laplacian \begin{equation*} \Delta(\phi_p(\Delta u(n-1)))-a(n) |u(n)|^{p-2}u(n)+ \nabla F(n,u(n))=0, \quad n\in \mathbb{Z}. \end{equation*} By making use of the Linking theorem, we obtain a sufficient condition under which the system has at least one nonconstant periodic solution.
Classification :
39A11, 58E50, 70H05, 37J45.
@article{BMMS_2012_35_2_a12,
author = {Zhiming Luo and Xingyong Zhang},
title = {Existence of {Nonconstant} {Periodic} {Solutions} for a {Nonlinear} {Discrete} {System} {Involving} the $p${-Laplacian}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a12/}
}
TY - JOUR AU - Zhiming Luo AU - Xingyong Zhang TI - Existence of Nonconstant Periodic Solutions for a Nonlinear Discrete System Involving the $p$-Laplacian JO - Bulletin of the Malaysian Mathematical Society PY - 2012 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a12/ ID - BMMS_2012_35_2_a12 ER -
%0 Journal Article %A Zhiming Luo %A Xingyong Zhang %T Existence of Nonconstant Periodic Solutions for a Nonlinear Discrete System Involving the $p$-Laplacian %J Bulletin of the Malaysian Mathematical Society %D 2012 %V 35 %N 2 %U http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a12/ %F BMMS_2012_35_2_a12
Zhiming Luo; Xingyong Zhang. Existence of Nonconstant Periodic Solutions for a Nonlinear Discrete System Involving the $p$-Laplacian. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a12/