Weak Annihilator over Extension Rings
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $R$ be a ring and nil$(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a\in R \mid xa\in$ nil$(R)$ for all $x\in X\},$ which is called the weak annihilator of $X$ in $R$. In this paper we mainly investigate the properties of the weak annihilator over extension rings.
Classification : Primary: 13B25; Secondary: 16N60.
@article{BMMS_2012_35_2_a10,
     author = {Lunqun Ouyang and Gary F. Birkenmeier},
     title = {Weak {Annihilator} over {Extension}  {Rings}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a10/}
}
TY  - JOUR
AU  - Lunqun Ouyang
AU  - Gary F. Birkenmeier
TI  - Weak Annihilator over Extension  Rings
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a10/
ID  - BMMS_2012_35_2_a10
ER  - 
%0 Journal Article
%A Lunqun Ouyang
%A Gary F. Birkenmeier
%T Weak Annihilator over Extension  Rings
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a10/
%F BMMS_2012_35_2_a10
Lunqun Ouyang; Gary F. Birkenmeier. Weak Annihilator over Extension  Rings. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a10/