Weak Annihilator over Extension Rings
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $R$ be a ring and nil$(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a\in R \mid xa\in$ nil$(R)$ for all $x\in X\},$ which is called the weak annihilator of $X$ in $R$. In this paper we mainly investigate the properties of the weak annihilator over extension rings.
Classification :
Primary: 13B25; Secondary: 16N60.
@article{BMMS_2012_35_2_a10,
author = {Lunqun Ouyang and Gary F. Birkenmeier},
title = {Weak {Annihilator} over {Extension} {Rings}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a10/}
}
Lunqun Ouyang; Gary F. Birkenmeier. Weak Annihilator over Extension Rings. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2_a10/