Sharp Remainder Terms of the Rellich Inequality and its Application
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2A
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this article we shall study the improvement of the Rellich inequality by adding terms with a singular weight of the type $\left(\log (1/|x|)\right)^{-2}$ in the right hand side. We show that this weight function is optimal in the sense that the improved inequality fails for any other weight more singular than this one. As an application, we use our improved inequality to analyze the behaviour of the first eigenvalue of the weighted eigenvalue problem for the operator $L_\mu u=\Delta\left(|\Delta u|^{p-2}\Delta u \right) - \left(\mu/|x|^{2p}\right)|u|^{p-2}u$ as $\mu$ increases to $\left((n-2p)/p\right)^p \left((np-n)/p\right)^p$ for $1$.
Classification :
Primary: 35J70; Secondary: 35J60.
@article{BMMS_2012_35_2A_a6,
author = {Alnar Detalla and Toshio Horiuchi and Hiroshi Ando},
title = {Sharp {Remainder} {Terms} of the {Rellich} {Inequality} and its {Application}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {2A},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_2A_a6/}
}
TY - JOUR AU - Alnar Detalla AU - Toshio Horiuchi AU - Hiroshi Ando TI - Sharp Remainder Terms of the Rellich Inequality and its Application JO - Bulletin of the Malaysian Mathematical Society PY - 2012 VL - 35 IS - 2A UR - http://geodesic.mathdoc.fr/item/BMMS_2012_35_2A_a6/ ID - BMMS_2012_35_2A_a6 ER -
Alnar Detalla; Toshio Horiuchi; Hiroshi Ando. Sharp Remainder Terms of the Rellich Inequality and its Application. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 2A. http://geodesic.mathdoc.fr/item/BMMS_2012_35_2A_a6/