On Sum-Connectivity Index of Bicyclic Graphs
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The sum-connectivity index is a new variant of the famous Randic connectivity index usable in quantitative structure-property relationship and quantitative structure-activity relationship studies. We determine the minimum sum-connectivity index of bicyclic graphs with $n$ vertices and matching number $m$, where $2\le m\le \lfloor n/2\rfloor$, the minimum and the second minimum, as well as the maximum and the second maximum sum-connectivity indices of bicyclic graphs with $n\ge 5$ vertices. The extremal graphs are characterized.
Classification : 05C35, 05C90, 05C07.
@article{BMMS_2012_35_1_a9,
     author = {Zhibin Du and Bo Zhou},
     title = {On {Sum-Connectivity} {Index} of {Bicyclic} {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a9/}
}
TY  - JOUR
AU  - Zhibin Du
AU  - Bo Zhou
TI  - On Sum-Connectivity Index of Bicyclic Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a9/
ID  - BMMS_2012_35_1_a9
ER  - 
%0 Journal Article
%A Zhibin Du
%A Bo Zhou
%T On Sum-Connectivity Index of Bicyclic Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a9/
%F BMMS_2012_35_1_a9
Zhibin Du; Bo Zhou. On Sum-Connectivity Index of Bicyclic Graphs. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a9/