On Lower Semi-Continuity of Interval-Valued Multihomomorphisms
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

It is well known that if $f$ is a continuous homomorphism on $(\mathbb{R}, +)$, then there exists a constant $c \in \mathbb{R}$ such that $f(x) = cx$ for all $x \in \mathbb{R}$. Termwuttipong {\it et al.} extended this result to interval-valued multifunctions on $\mathbb{R}$. They proved that an interval-valued multifunction $f$ on $\mathbb{R}$ is an upper semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if and only if $f$ has one of the following forms : $f(x) = \{cx\}, f(x) = \mathbb{R}, f(x) = (0, \infty), f(x) = (-\infty, 0), f(x) = [\,cx, \infty), f(x) = (-\infty, cx\,]$ where $c$ is a constant in $\mathbb{R}.$ In this paper, we extend the above well known result by considering lower semi-continuity. It is shown that an interval-valued multifunction $f$ on $\mathbb{R}$ is a lower semi-continuous multihomomorphism on $(\mathbb{R}, +)$ if and only if $f$ is one of the following: $f(x) = \{cx\}, f(x) = \mathbb{R}, f(x) = (cx, \infty), f(x) = (-\infty, cx), f(x) = [\,cx, \infty), f(x) = (-\infty, cx\,]$ where $c$ is a constant in $\mathbb{R}$.
Classification : 26A15, 26E25.
@article{BMMS_2012_35_1_a7,
     author = {S. Pianskool and P. Udomkavanich and P. Youngkhong},
     title = {On {Lower} {Semi-Continuity} of {Interval-Valued} {Multihomomorphisms}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a7/}
}
TY  - JOUR
AU  - S. Pianskool
AU  - P. Udomkavanich
AU  - P. Youngkhong
TI  - On Lower Semi-Continuity of Interval-Valued Multihomomorphisms
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a7/
ID  - BMMS_2012_35_1_a7
ER  - 
%0 Journal Article
%A S. Pianskool
%A P. Udomkavanich
%A P. Youngkhong
%T On Lower Semi-Continuity of Interval-Valued Multihomomorphisms
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a7/
%F BMMS_2012_35_1_a7
S. Pianskool; P. Udomkavanich; P. Youngkhong. On Lower Semi-Continuity of Interval-Valued Multihomomorphisms. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a7/