Simple Groups Which are $2$-Fold OD-Characterizable
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G$ be a finite group and ${\rm D}(G)$ be the degree pattern of $G$. Denote by $h_{{\rm OD}}(G)$ the number of isomorphism classes of finite groups $H$ satisfying $(|H|, {\rm D}(H))=(|G|, {\rm D}(G))$. A finite group $G$ is called $k$- fold {OD}- characterizable if $h_{\rm OD}(G)=k$. As the main results of this paper, we prove that each of the following pairs $\{G_1, \ G_2\}$ of groups:

$ \{B_n(q),\ C_n(q)\},\quad n=2^m> 2, \quad |\pi\left(\frac{q^n+1}{2}\right)|=1, \quad q\; \text{is odd prime \ power};\\ \{B_p(3), \ C_p(3)\}, \quad |\pi\left(\frac{3^p-1}{2}\right)|=1, \quad p\; \text{ is an odd prime,}\\ \{B_3(5), \ C_3(5)\}, $

satisfies $h_{{\rm OD}}(G_i)=2$, $i=1, 2$. We also prove that, if $(1)$ $n=2$ and $q$ is any prime power such that $|\pi({q^2+1}/{(2, q-1)})|=1$ or $(2)$ $n=2^m\geq 2$ and $q$ is a power of 2 such that $|\pi(q^n+1)|=1$, then $h_{{\rm OD}}(C_n(q))=h_{{\rm OD}}(B_n(q))=1$.
Classification : 20D05, 20D06, 20D08.
@article{BMMS_2012_35_1_a6,
     author = {M. Akbari and A. R. Moghaddamfar},
     title = {Simple {Groups} {Which} are $2${-Fold} {OD-Characterizable}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a6/}
}
TY  - JOUR
AU  - M. Akbari
AU  - A. R. Moghaddamfar
TI  - Simple Groups Which are $2$-Fold OD-Characterizable
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a6/
ID  - BMMS_2012_35_1_a6
ER  - 
%0 Journal Article
%A M. Akbari
%A A. R. Moghaddamfar
%T Simple Groups Which are $2$-Fold OD-Characterizable
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a6/
%F BMMS_2012_35_1_a6
M. Akbari; A. R. Moghaddamfar. Simple Groups Which are $2$-Fold OD-Characterizable. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a6/