A Note on Graded Components of Local Cohomology Modules at the Earliest Level of Non-Artinianess
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $M$ be a finitely generated graded $R$-module where $R$ is a Noetherian homogeneous ring with local base ring $(R_{0}, m_{0})$ and $R_{+}$, the irrelevant ideal of $R$. Let $ a(M)= \sup \{j \in \mathbb{N}_{0}| H_{R_{+}}^{i}(M)$ is Artinian for all $i j \}.$ We prove that if $a(M) \infty$ then $H_{R_{+}}^{a(M)}(M)$ is tame. Some strategies to establish tameness for graded modules in general will be discussed.
Classification :
Primary: 13M10; Secondary: 57N10, 57M60.
@article{BMMS_2012_35_1_a5,
author = {Chia S. Lim},
title = {A {Note} on {Graded} {Components} of {Local} {Cohomology} {Modules} at the {Earliest} {Level} of {Non-Artinianess}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a5/}
}
Chia S. Lim. A Note on Graded Components of Local Cohomology Modules at the Earliest Level of Non-Artinianess. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a5/