A Note on Graded Components of Local Cohomology Modules at the Earliest Level of Non-Artinianess
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $M$ be a finitely generated graded $R$-module where $R$ is a Noetherian homogeneous ring with local base ring $(R_{0}, m_{0})$ and $R_{+}$, the irrelevant ideal of $R$. Let $ a(M)= \sup \{j \in \mathbb{N}_{0}| H_{R_{+}}^{i}(M)$ is Artinian for all $i j \}.$ We prove that if $a(M) \infty$ then $H_{R_{+}}^{a(M)}(M)$ is tame. Some strategies to establish tameness for graded modules in general will be discussed.
Classification : Primary: 13M10; Secondary: 57N10, 57M60.
@article{BMMS_2012_35_1_a5,
     author = {Chia S. Lim},
     title = {A {Note} on {Graded} {Components} of {Local} {Cohomology} {Modules} at the {Earliest} {Level} of {Non-Artinianess}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a5/}
}
TY  - JOUR
AU  - Chia S. Lim
TI  - A Note on Graded Components of Local Cohomology Modules at the Earliest Level of Non-Artinianess
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a5/
ID  - BMMS_2012_35_1_a5
ER  - 
%0 Journal Article
%A Chia S. Lim
%T A Note on Graded Components of Local Cohomology Modules at the Earliest Level of Non-Artinianess
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a5/
%F BMMS_2012_35_1_a5
Chia S. Lim. A Note on Graded Components of Local Cohomology Modules at the Earliest Level of Non-Artinianess. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a5/