A $q$-Analogue of the Meyer-König and Zeller Operators
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper we introduce a new $q$-analogue of the Meyer-König and Zeller operators ($M_{n,q}(f;x)$). We estimate the rate of convergence of $M_{n,q}(f;x)$ by the first and the second modulus of continuity.
Classification : 41A35, 41A25, 41A36.
@article{BMMS_2012_35_1_a3,
     author = {Nazim Mahmudov and Pembe Sabancigil},
     title = {A $q${-Analogue} of the {Meyer-K\"onig} and {Zeller} {Operators}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a3/}
}
TY  - JOUR
AU  - Nazim Mahmudov
AU  - Pembe Sabancigil
TI  - A $q$-Analogue of the Meyer-König and Zeller Operators
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a3/
ID  - BMMS_2012_35_1_a3
ER  - 
%0 Journal Article
%A Nazim Mahmudov
%A Pembe Sabancigil
%T A $q$-Analogue of the Meyer-König and Zeller Operators
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a3/
%F BMMS_2012_35_1_a3
Nazim Mahmudov; Pembe Sabancigil. A $q$-Analogue of the Meyer-König and Zeller Operators. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a3/