A $q$-Analogue of the Meyer-König and Zeller Operators
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper we introduce a new $q$-analogue of the Meyer-König and Zeller operators ($M_{n,q}(f;x)$). We estimate the rate of convergence of $M_{n,q}(f;x)$ by the first and the second modulus of continuity.
Classification :
41A35, 41A25, 41A36.
@article{BMMS_2012_35_1_a3,
author = {Nazim Mahmudov and Pembe Sabancigil},
title = {A $q${-Analogue} of the {Meyer-K\"onig} and {Zeller} {Operators}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a3/}
}
Nazim Mahmudov; Pembe Sabancigil. A $q$-Analogue of the Meyer-König and Zeller Operators. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a3/