Existence of Periodic Solutions of $p(t)$-Laplacian Systems
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, by using the least action principle in critical point theory, we obtain some existence theorems of periodic solutions for $p(t)$-Laplacian system \begin{equation*} \left\{ \begin{aligned} \frac{d}{dt}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))=\nabla F(t,u(t))\quad \text{a.e. }t\in[0,T] \\ (0)-u(T)=\dot{u}(0)-\dot{u}(T)=0, \end{aligned} \right. \end{equation*} which generalize some existence theorems.
Classification :
34C25, 35A15.
@article{BMMS_2012_35_1_a2,
author = {Liang Zhang and Yi Chen},
title = {Existence of {Periodic} {Solutions} of $p(t)${-Laplacian} {Systems}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a2/}
}
Liang Zhang; Yi Chen. Existence of Periodic Solutions of $p(t)$-Laplacian Systems. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a2/