Existence of Periodic Solutions of $p(t)$-Laplacian Systems
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, by using the least action principle in critical point theory, we obtain some existence theorems of periodic solutions for $p(t)$-Laplacian system \begin{equation*} \left\{ \begin{aligned} \frac{d}{dt}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))=\nabla F(t,u(t))\quad \text{a.e. }t\in[0,T] \\ (0)-u(T)=\dot{u}(0)-\dot{u}(T)=0, \end{aligned} \right. \end{equation*} which generalize some existence theorems.
Classification : 34C25, 35A15.
@article{BMMS_2012_35_1_a2,
     author = {Liang Zhang and Yi Chen},
     title = {Existence of {Periodic} {Solutions} of $p(t)${-Laplacian} {Systems}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a2/}
}
TY  - JOUR
AU  - Liang Zhang
AU  - Yi Chen
TI  - Existence of Periodic Solutions of $p(t)$-Laplacian Systems
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a2/
ID  - BMMS_2012_35_1_a2
ER  - 
%0 Journal Article
%A Liang Zhang
%A Yi Chen
%T Existence of Periodic Solutions of $p(t)$-Laplacian Systems
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a2/
%F BMMS_2012_35_1_a2
Liang Zhang; Yi Chen. Existence of Periodic Solutions of $p(t)$-Laplacian Systems. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a2/