Capability of a Pair of Groups
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A group $G$ is called capable if it is the group of inner automorphisms of some group $E$. Capable pairs are defined in terms of a relative central extension. In this paper, we introduce the precise center for a pair of groups and prove that this subgroup makes a criterion for characterizing the capability of the pair. We also show that our result sharpens the obtained result in this area. A complete classification of finitely generated abelian capable pairs will also be given.
Classification : 20E34, 20E36, 20F28.
@article{BMMS_2012_35_1_a18,
     author = {A. Pourmirzaei and A. Hokmabadi and S. Kayvanfar},
     title = {Capability of a {Pair} of {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a18/}
}
TY  - JOUR
AU  - A. Pourmirzaei
AU  - A. Hokmabadi
AU  - S. Kayvanfar
TI  - Capability of a Pair of Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a18/
ID  - BMMS_2012_35_1_a18
ER  - 
%0 Journal Article
%A A. Pourmirzaei
%A A. Hokmabadi
%A S. Kayvanfar
%T Capability of a Pair of Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a18/
%F BMMS_2012_35_1_a18
A. Pourmirzaei; A. Hokmabadi; S. Kayvanfar. Capability of a Pair of Groups. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a18/