Capability of a Pair of Groups
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
A group $G$ is called capable if it is the group of inner automorphisms of some group $E$. Capable pairs are defined in terms of a relative central extension. In this paper, we introduce the precise center for a pair of groups and prove that this subgroup makes a criterion for characterizing the capability of the pair. We also show that our result sharpens the obtained result in this area. A complete classification of finitely generated abelian capable pairs will also be given.
Classification :
20E34, 20E36, 20F28.
@article{BMMS_2012_35_1_a18,
author = {A. Pourmirzaei and A. Hokmabadi and S. Kayvanfar},
title = {Capability of a {Pair} of {Groups}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a18/}
}
A. Pourmirzaei; A. Hokmabadi; S. Kayvanfar. Capability of a Pair of Groups. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a18/