The Measure-Theoretic Entropy of Linear Cellular Automata with Respect to a Markov Measure
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
The purpose of this short paper is to compute the measure-theoretic entropy of the one-dimensional linear cellular automata defined by bipermutative local rules on the ring $\mathbb{Z}_{m}$, $m \geq 2$, with respect to a Markov measure generated by a stochastic matrix $P$ and a probability vector $\pi$ such that $\pi P=\pi$.
Classification :
Primary: 28D20; Secondary: 37A35, 37B40.
@article{BMMS_2012_35_1_a15,
author = {Hasan Akin},
title = {The {Measure-Theoretic} {Entropy} of {Linear} {Cellular} {Automata} with {Respect} to a {Markov} {Measure}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a15/}
}
Hasan Akin. The Measure-Theoretic Entropy of Linear Cellular Automata with Respect to a Markov Measure. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a15/