Notes on Non-Vanishing Elements of Finite Solvable Groups
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G$ be a finite solvable group. The element $g \in G$ is said to be a non-vanishing element of $G$ if $\chi(g) \neq 0$ for all $\chi \in {\rm Irr\ }(G)$. It is conjectured that all of non-vanishing elements of $G$ lie in its Fitting subgroup $F(G)$. In this note, we prove that this conjecture is true for nilpotent-by-supersolvable groups. Write $\mathscr{V}(G)$ to denote the subgroup generated by all non-vanishing elements of $G$, and $F_n(G)$ the nth term of the ascending Fitting series. It is proved that $\mathscr{V}(F_n(G)) \leq F_{n-1}(G)$ whenever $G$ is solvable. If this conjecture were not true, then it is proved that the minimal counterexample is a solvable primitive permutation group and the more detailed information is presented. Some other related results are proved.
Classification : 20C15, 20D10.
@article{BMMS_2012_35_1_a14,
     author = {Liguo He},
     title = {Notes on {Non-Vanishing} {Elements} of {Finite} {Solvable} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2012},
     volume = {35},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a14/}
}
TY  - JOUR
AU  - Liguo He
TI  - Notes on Non-Vanishing Elements of Finite Solvable Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2012
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a14/
ID  - BMMS_2012_35_1_a14
ER  - 
%0 Journal Article
%A Liguo He
%T Notes on Non-Vanishing Elements of Finite Solvable Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2012
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a14/
%F BMMS_2012_35_1_a14
Liguo He. Notes on Non-Vanishing Elements of Finite Solvable Groups. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a14/