Chromaticity of Complete 6-Partite Graphs with Certain Star or Matching Deleted
Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $P(G,\lambda)$ be the chromatic polynomial of a graph $G$. Two graphs $G$ and $H$ are said to be chromatically equivalent, denoted $G\sim H$, if $P(G,\lambda)=P(H,\lambda)$. We write $[G]=\{H|H\sim G\}$. If $[G]=\{G\}$, then $G$ is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs with $6n$ vertices according to the number of 7-independent partitions of $G$. Using these results, we investigate the chromaticity of $G$ with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.
Classification :
05C15.
@article{BMMS_2012_35_1_a1,
author = {H. Roslan and A. Sh. Ameen and Y. H. Peng and H. X. Zhao},
title = {Chromaticity of {Complete} {6-Partite} {Graphs} with {Certain} {Star} or {Matching} {Deleted}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2012},
volume = {35},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a1/}
}
TY - JOUR AU - H. Roslan AU - A. Sh. Ameen AU - Y. H. Peng AU - H. X. Zhao TI - Chromaticity of Complete 6-Partite Graphs with Certain Star or Matching Deleted JO - Bulletin of the Malaysian Mathematical Society PY - 2012 VL - 35 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a1/ ID - BMMS_2012_35_1_a1 ER -
%0 Journal Article %A H. Roslan %A A. Sh. Ameen %A Y. H. Peng %A H. X. Zhao %T Chromaticity of Complete 6-Partite Graphs with Certain Star or Matching Deleted %J Bulletin of the Malaysian Mathematical Society %D 2012 %V 35 %N 1 %U http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a1/ %F BMMS_2012_35_1_a1
H. Roslan; A. Sh. Ameen; Y. H. Peng; H. X. Zhao. Chromaticity of Complete 6-Partite Graphs with Certain Star or Matching Deleted. Bulletin of the Malaysian Mathematical Society, Tome 35 (2012) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2012_35_1_a1/