Matrix Summability Methods on The Approximation of Multivariate $q$-MKZ Operators
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, a $q$-based generalization of Meyer-König and Zeller (MKZ) operators in several variables are introduced. A Korovkin-type approximation theorem via $A$-statistical convergence is obtained and their various $A$-statistical approximation properties are investigated when $A$ is any non-negative regular summability matrix.
Classification :
41A25, 41A36.
@article{BMMS_2011_34_3_a4,
author = {H\"useyin Aktuglu and Ali \"Ozarslan and Oktay Duman},
title = {Matrix {Summability} {Methods} on {The} {Approximation} of {Multivariate} $q${-MKZ} {Operators}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a4/}
}
TY - JOUR AU - Hüseyin Aktuglu AU - Ali Özarslan AU - Oktay Duman TI - Matrix Summability Methods on The Approximation of Multivariate $q$-MKZ Operators JO - Bulletin of the Malaysian Mathematical Society PY - 2011 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a4/ ID - BMMS_2011_34_3_a4 ER -
Hüseyin Aktuglu; Ali Özarslan; Oktay Duman. Matrix Summability Methods on The Approximation of Multivariate $q$-MKZ Operators. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a4/