Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, we consider the third order nonlinear delay dynamic equations
on a time scale $\mathbb{T}$, where $\gamma>0$ is a quotient of odd positive integers, $a$ and $r$ are positive $rd$-continuous functions on $\mathbb{T},$ and the so-called delay function $\tau:\mathbb{T}\rightarrow\mathbb{T}$ satisfies $\tau(t)\leq t,$ and $\tau(t)\to\infty$ as $t\to\infty$, $f\in C(\mathbb{T}\times\mathbb{R},\mathbb{R})$ is assumed to satisfy $uf(t,u)>0,$ for $u\neq0$ and there exists a positive $rd$-continuous function $p$ on $\mathbb{T}$ such that $f(t,u)/u^\gamma\geq p(t),$ for $u\neq 0$. We establish some new results. Some examples are considered to illustrate the main results.
| $ (a(t)\{[r(t)x^\Delta(t)]^\Delta\}^\gamma)^\Delta+f(t, x(\tau(t)))=0, $ |
Classification :
39A21, 34C10, 34K11, 34N05.
@article{BMMS_2011_34_3_a19,
author = {Tongxing Li and Zhenlai Han and Shurong Sun and Yige Zhao},
title = {Oscillation {Results} for {Third} {Order} {Nonlinear} {Delay} {Dynamic} {Equations} on {Time} {Scales}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/}
}
TY - JOUR AU - Tongxing Li AU - Zhenlai Han AU - Shurong Sun AU - Yige Zhao TI - Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales JO - Bulletin of the Malaysian Mathematical Society PY - 2011 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/ ID - BMMS_2011_34_3_a19 ER -
%0 Journal Article %A Tongxing Li %A Zhenlai Han %A Shurong Sun %A Yige Zhao %T Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales %J Bulletin of the Malaysian Mathematical Society %D 2011 %V 34 %N 3 %U http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/ %F BMMS_2011_34_3_a19
Tongxing Li; Zhenlai Han; Shurong Sun; Yige Zhao. Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/