Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we consider the third order nonlinear delay dynamic equations

$ (a(t)\{[r(t)x^\Delta(t)]^\Delta\}^\gamma)^\Delta+f(t, x(\tau(t)))=0, $

on a time scale $\mathbb{T}$, where $\gamma>0$ is a quotient of odd positive integers, $a$ and $r$ are positive $rd$-continuous functions on $\mathbb{T},$ and the so-called delay function $\tau:\mathbb{T}\rightarrow\mathbb{T}$ satisfies $\tau(t)\leq t,$ and $\tau(t)\to\infty$ as $t\to\infty$, $f\in C(\mathbb{T}\times\mathbb{R},\mathbb{R})$ is assumed to satisfy $uf(t,u)>0,$ for $u\neq0$ and there exists a positive $rd$-continuous function $p$ on $\mathbb{T}$ such that $f(t,u)/u^\gamma\geq p(t),$ for $u\neq 0$. We establish some new results. Some examples are considered to illustrate the main results.
Classification : 39A21, 34C10, 34K11, 34N05.
@article{BMMS_2011_34_3_a19,
     author = {Tongxing Li and Zhenlai Han and Shurong Sun and Yige Zhao},
     title = {Oscillation {Results} for {Third} {Order} {Nonlinear} {Delay} {Dynamic} {Equations} on {Time} {Scales}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/}
}
TY  - JOUR
AU  - Tongxing Li
AU  - Zhenlai Han
AU  - Shurong Sun
AU  - Yige Zhao
TI  - Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/
ID  - BMMS_2011_34_3_a19
ER  - 
%0 Journal Article
%A Tongxing Li
%A Zhenlai Han
%A Shurong Sun
%A Yige Zhao
%T Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/
%F BMMS_2011_34_3_a19
Tongxing Li; Zhenlai Han; Shurong Sun; Yige Zhao. Oscillation Results for Third Order Nonlinear Delay Dynamic Equations on Time Scales. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a19/