The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $G$ be a planar graph with maximum degree $\Delta\geq 5$. It is proved that $la(G)=\lceil\Delta(G)/2\rceil$ if (1) any 4-cycle is not adjacent to an $i$-cycle for any $i\in\{3,4,5\}$ or (2) $G$ has no intersecting 4-cycles and intersecting $i$-cycles for some $i\in \{3, 6\}$.
Classification :
05C15.
@article{BMMS_2011_34_3_a11,
author = {Xiang Tan and Hongyu Chen and Jianliang Wu},
title = {The {Linear} {Arboricity} of {Planar} {Graphs} with {Maximum} {Degree} at {Least} {Five}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/}
}
TY - JOUR AU - Xiang Tan AU - Hongyu Chen AU - Jianliang Wu TI - The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five JO - Bulletin of the Malaysian Mathematical Society PY - 2011 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/ ID - BMMS_2011_34_3_a11 ER -
Xiang Tan; Hongyu Chen; Jianliang Wu. The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/