The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G$ be a planar graph with maximum degree $\Delta\geq 5$. It is proved that $la(G)=\lceil\Delta(G)/2\rceil$ if (1) any 4-cycle is not adjacent to an $i$-cycle for any $i\in\{3,4,5\}$ or (2) $G$ has no intersecting 4-cycles and intersecting $i$-cycles for some $i\in \{3, 6\}$.
Classification : 05C15.
@article{BMMS_2011_34_3_a11,
     author = {Xiang Tan and Hongyu Chen and Jianliang Wu},
     title = {The {Linear} {Arboricity} of {Planar} {Graphs} with {Maximum} {Degree} at {Least} {Five}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/}
}
TY  - JOUR
AU  - Xiang Tan
AU  - Hongyu Chen
AU  - Jianliang Wu
TI  - The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/
ID  - BMMS_2011_34_3_a11
ER  - 
%0 Journal Article
%A Xiang Tan
%A Hongyu Chen
%A Jianliang Wu
%T The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/
%F BMMS_2011_34_3_a11
Xiang Tan; Hongyu Chen; Jianliang Wu. The Linear Arboricity of Planar Graphs with Maximum Degree at Least Five. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a11/