Quasirecognition by the Prime Graph of the Group $C_n(2)$, Where $n\neq 3$ is Odd
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G$ be a finite group and let $\Gamma(G)$ be the prime graph of $G$. We assume that $n$ is an odd number. In this paper, we show that if $\Gamma(G)=\Gamma(C_n(2))$, where $n\neq 3$, then $G$ has a unique nonabelian composition factor isomorphic to $C_n(2)$. As consequences of our result, $C_n(2)$ is quasirecognizable by its spectrum and by a new proof the validity of a conjecture of W. J. Shi for $C_n(2)$ is obtained.
Classification : 20D05, 20D06, 20D60.
@article{BMMS_2011_34_3_a10,
     author = {Mahnaz Foroudi Ghasemabadi and Ali Iranmanesh},
     title = {Quasirecognition by the {Prime} {Graph} of the {Group} $C_n(2)$, {Where} $n\neq 3$ is {Odd}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a10/}
}
TY  - JOUR
AU  - Mahnaz Foroudi Ghasemabadi
AU  - Ali Iranmanesh
TI  - Quasirecognition by the Prime Graph of the Group $C_n(2)$, Where $n\neq 3$ is Odd
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a10/
ID  - BMMS_2011_34_3_a10
ER  - 
%0 Journal Article
%A Mahnaz Foroudi Ghasemabadi
%A Ali Iranmanesh
%T Quasirecognition by the Prime Graph of the Group $C_n(2)$, Where $n\neq 3$ is Odd
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a10/
%F BMMS_2011_34_3_a10
Mahnaz Foroudi Ghasemabadi; Ali Iranmanesh. Quasirecognition by the Prime Graph of the Group $C_n(2)$, Where $n\neq 3$ is Odd. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a10/