Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Computer or communication networks are so designed that they do not easily get disrupted under external attack and, moreover, these are easily reconstructed when they do get disrupted. These desirable properties of networks can be measured by various parameters such as connectivity, toughness, tenacity and rupture degree. Among these parameters, tenacity and rupture degree are comparatively better parameters to measure the vulnerability of networks. In this paper, the authors give the exact values for the tenacity and rupture degree of permutation graphs of complete bipartite graphs.
Classification : 05C40, 05C90, 68R10, 94C15.
@article{BMMS_2011_34_3_a0,
     author = {Fengwei Li and Qingfang Ye and Xueliang Li},
     title = {Tenacity and {Rupture} {Degree} of {Permutation} {Graphs} of {Complete} {Bipartite} {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a0/}
}
TY  - JOUR
AU  - Fengwei Li
AU  - Qingfang Ye
AU  - Xueliang Li
TI  - Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a0/
ID  - BMMS_2011_34_3_a0
ER  - 
%0 Journal Article
%A Fengwei Li
%A Qingfang Ye
%A Xueliang Li
%T Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a0/
%F BMMS_2011_34_3_a0
Fengwei Li; Qingfang Ye; Xueliang Li. Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2011_34_3_a0/