Volterra Composition Operators from $F(p,q,s)$ Spaces to Bloch-type Spaces
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $H(B)$ denote the space of all holomorphic functions on the unit ball $B\subset \mathbb{C}^n$. Let $\varphi$ be a holomorphic self-map of $B$ and $g\in H(B)$. In this paper, we investigate the boundedness and compactness of the Volterra composition operator $(V^g_{\varphi} f)(z)=\int_0^1f(\varphi(tz))\Re g(tz)\frac{dt}t,$ which map from general function space $F(p,q,s)$ to Bloch-type space $\mathcal{B}^\alpha$ in the unit ball.
Classification : Primary: 47B35; Secondary: 30H05.
@article{BMMS_2011_34_2_a5,
     author = {Weifeng Yang},
     title = {Volterra {Composition} {Operators} from {\(F(p,q,s)\)} {Spaces} to {Bloch-type} {Spaces}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a5/}
}
TY  - JOUR
AU  - Weifeng Yang
TI  - Volterra Composition Operators from \(F(p,q,s)\) Spaces to Bloch-type Spaces
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a5/
ID  - BMMS_2011_34_2_a5
ER  - 
%0 Journal Article
%A Weifeng Yang
%T Volterra Composition Operators from \(F(p,q,s)\) Spaces to Bloch-type Spaces
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a5/
%F BMMS_2011_34_2_a5
Weifeng Yang. Volterra Composition Operators from \(F(p,q,s)\) Spaces to Bloch-type Spaces. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a5/