Volterra Composition Operators from $F(p,q,s)$ Spaces to Bloch-type Spaces
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let $H(B)$ denote the space of all holomorphic functions on the unit ball $B\subset \mathbb{C}^n$. Let $\varphi$ be a holomorphic self-map of $B$ and $g\in H(B)$. In this paper, we investigate the boundedness and compactness of the Volterra composition operator $(V^g_{\varphi} f)(z)=\int_0^1f(\varphi(tz))\Re g(tz)\frac{dt}t,$ which map from general function space $F(p,q,s)$ to Bloch-type space $\mathcal{B}^\alpha$ in the unit ball.
Classification :
Primary: 47B35; Secondary: 30H05.
@article{BMMS_2011_34_2_a5,
author = {Weifeng Yang},
title = {Volterra {Composition} {Operators} from {\(F(p,q,s)\)} {Spaces} to {Bloch-type} {Spaces}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a5/}
}
Weifeng Yang. Volterra Composition Operators from \(F(p,q,s)\) Spaces to Bloch-type Spaces. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a5/