Coefficient Estimates and Landau-Bloch's Constant for Planar Harmonic Mappings
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The aim of this paper is to study the properties of planar harmonic mappings. The main results are as follows. First, by using the subordination of analytic functions, a sharp coefficient estimate is obtained and several applications are given. Then two results about Landau-Bloch's constant are proved: one for planar harmonic mappings and the other for $L(f)$, where $L$ represents the linear complex operator $L=z\frac{\partial}{\partial z} -\overline{z}\frac{\partial}{\partial \overline{z}}$ defined on the class of complex-valued $C^1$ functions in the plane and $f$ is an open harmonic mapping.
Classification : Primary: 30C65, 30C45; Secondary: 30C20.
@article{BMMS_2011_34_2_a4,
     author = {Sh. Chen and S. Ponnusamy and X. Wang},
     title = {Coefficient {Estimates} and {Landau-Bloch's} {Constant} for {Planar} {Harmonic} {Mappings}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a4/}
}
TY  - JOUR
AU  - Sh. Chen
AU  - S. Ponnusamy
AU  - X. Wang
TI  - Coefficient Estimates and Landau-Bloch's Constant for Planar Harmonic Mappings
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a4/
ID  - BMMS_2011_34_2_a4
ER  - 
%0 Journal Article
%A Sh. Chen
%A S. Ponnusamy
%A X. Wang
%T Coefficient Estimates and Landau-Bloch's Constant for Planar Harmonic Mappings
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a4/
%F BMMS_2011_34_2_a4
Sh. Chen; S. Ponnusamy; X. Wang. Coefficient Estimates and Landau-Bloch's Constant for Planar Harmonic Mappings. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a4/