On ƒ-Edge Cover Coloring of Nearly Bipartite Graphs
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G(V, E)$ be a graph, and let $f$ be an integer function on $V$ with $1\leq f(v)\leq d(v)$ to each vertex $v\in V$. An $f$-edge cover coloring is an edge coloring $C$ such that each color appears at each vertex $v$ at least $f(v)$ times. The $f$-edge cover chromatic index of $G$, denoted by $\chi '_{fc}(G)$, is the maximum number of colors needed to $f$-edge cover color $G$. It is well-known that $\min\limits _{v\in V}\left\lfloor \frac{d(v)-\mu(v)}{f(v)}\right\rfloor\leq\chi '_{fc}(G)\leq\delta_{f},$ where $\mu(v)$ is the multiplicity of $v$ and $\delta_{f}=\min\{\lfloor \frac{d(v)}{f(v)}\rfloor: v\in V(G)\}$. If $\chi '_{fc}= \delta_{f}$, then $G$ is of $f_{c}$-class $1$, otherwise $G$ is of $f_{c}$-class $2$. In this paper, we give some new sufficient conditions for a nearly bipartite graph to be of $f_{c}$-class $1$.
Classification : 05C15, 05C25.
@article{BMMS_2011_34_2_a3,
     author = {Jinbo Li and Guizhen Liu},
     title = {On {{\textflorin}-Edge} {Cover} {Coloring} of {Nearly} {Bipartite} {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a3/}
}
TY  - JOUR
AU  - Jinbo Li
AU  - Guizhen Liu
TI  - On ƒ-Edge Cover Coloring of Nearly Bipartite Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a3/
ID  - BMMS_2011_34_2_a3
ER  - 
%0 Journal Article
%A Jinbo Li
%A Guizhen Liu
%T On ƒ-Edge Cover Coloring of Nearly Bipartite Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a3/
%F BMMS_2011_34_2_a3
Jinbo Li; Guizhen Liu. On ƒ-Edge Cover Coloring of Nearly Bipartite Graphs. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a3/