Comparison Projection Method with Adomian's Decomposition Method for Solving System of Integral Equations
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

System of integral equations have been solved in many papers. In particular, systems of integral equations with degenerate kernels have been solved with Adomian's decomposition method by some authors. In the present paper, we try to solve system of integral equations by using collocation method with Legendre polynomials which is more efficient and needs less computations than Adomian's decomposition method.
Classification : 45F99, 45B05, 65L60, 49M27, 42C10.
@article{BMMS_2011_34_2_a16,
     author = {Khosrow Maleknejad and Kazem Nouri and Leila Torkzadeh},
     title = {Comparison {Projection} {Method} with {Adomian's} {Decomposition} {Method} for {Solving} {System} of {Integral} {Equations}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a16/}
}
TY  - JOUR
AU  - Khosrow Maleknejad
AU  - Kazem Nouri
AU  - Leila Torkzadeh
TI  - Comparison Projection Method with Adomian's Decomposition Method for Solving System of Integral Equations
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a16/
ID  - BMMS_2011_34_2_a16
ER  - 
%0 Journal Article
%A Khosrow Maleknejad
%A Kazem Nouri
%A Leila Torkzadeh
%T Comparison Projection Method with Adomian's Decomposition Method for Solving System of Integral Equations
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a16/
%F BMMS_2011_34_2_a16
Khosrow Maleknejad; Kazem Nouri; Leila Torkzadeh. Comparison Projection Method with Adomian's Decomposition Method for Solving System of Integral Equations. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a16/