Finite Groups in which Primary Subgroups have Cyclic Cofactors
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we prove the following theorem: Let $G$ be a group, $q$ be the largest prime divisor of $|G|$ and $\pi =\pi (G)\setminus \{q\}$. Suppose that the factor group $X/core_GX$ is cyclic for every $p$-subgroup $X$ of $G$ and every $p\in \pi$. Then: (1). $G$ is soluble and its Hall $\{2, 3\}'$-subgroup is normal in $G$ and is a dispersive group by Ore; (2). All Hall $\{2, 3\}$-subgroups of $G$ are metanilpotent; (3). Every Hall $p'$-subgroup of $G$ is a dispersive group by Ore, for every $p\in \{2, 3\}$; (4). $l_{r}(G)\leq1$, for all $r\in \pi (G)$.
Classification : 20D10, 20D20.
@article{BMMS_2011_34_2_a12,
     author = {Yufeng Liu and Xiaolan Yi},
     title = {Finite {Groups} in which {Primary} {Subgroups} have {Cyclic} {Cofactors}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a12/}
}
TY  - JOUR
AU  - Yufeng Liu
AU  - Xiaolan Yi
TI  - Finite Groups in which Primary Subgroups have Cyclic Cofactors
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a12/
ID  - BMMS_2011_34_2_a12
ER  - 
%0 Journal Article
%A Yufeng Liu
%A Xiaolan Yi
%T Finite Groups in which Primary Subgroups have Cyclic Cofactors
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a12/
%F BMMS_2011_34_2_a12
Yufeng Liu; Xiaolan Yi. Finite Groups in which Primary Subgroups have Cyclic Cofactors. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a12/