A Parametric Family of Quartic Thue Inequalities
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper we prove that the only primitive solution of the Thue inequality $\left| x^4-2cx^3y+2x^2y^2+2cxy^3+y^4\right| \leq 6c+4,$ where $c\geq 5$ is an integer, are $\left(x,y\right)= \left(\pm 1, 0\right), \left(0, \pm 1\right), \left(1, \pm 1\right), \left(-1, \pm 1\right).$
Classification : Primary: 11D25, 11D59, 11A55; Secondary: 11A07, 11B37, 11D75, 11J68, 11J70, 11J86.
@article{BMMS_2011_34_2_a1,
     author = {Bernadin Ibrahimpa\v{s}ic},
     title = {A {Parametric} {Family} of {Quartic} {Thue} {Inequalities}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a1/}
}
TY  - JOUR
AU  - Bernadin Ibrahimpašic
TI  - A Parametric Family of Quartic Thue Inequalities
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a1/
ID  - BMMS_2011_34_2_a1
ER  - 
%0 Journal Article
%A Bernadin Ibrahimpašic
%T A Parametric Family of Quartic Thue Inequalities
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a1/
%F BMMS_2011_34_2_a1
Bernadin Ibrahimpašic. A Parametric Family of Quartic Thue Inequalities. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a1/