A Parametric Family of Quartic Thue Inequalities
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper we prove that the only primitive solution of the Thue inequality $\left| x^4-2cx^3y+2x^2y^2+2cxy^3+y^4\right| \leq 6c+4,$ where $c\geq 5$ is an integer, are $\left(x,y\right)= \left(\pm 1, 0\right), \left(0, \pm 1\right), \left(1, \pm 1\right), \left(-1, \pm 1\right).$
Classification :
Primary: 11D25, 11D59, 11A55; Secondary: 11A07, 11B37, 11D75, 11J68, 11J70, 11J86.
@article{BMMS_2011_34_2_a1,
author = {Bernadin Ibrahimpa\v{s}ic},
title = {A {Parametric} {Family} of {Quartic} {Thue} {Inequalities}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a1/}
}
Bernadin Ibrahimpašic. A Parametric Family of Quartic Thue Inequalities. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2011_34_2_a1/