A $C^*$-Algebra on Schur Algebras
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, we show the relation between the Schur algebras $S^{r}_{\Lambda, \Sigma}(\mathcal{B})$ and $S^{r'}_{\Lambda, \Sigma}(\mathcal{B})$, where $1 \le r' r \infty $. Then we set up the involution operator in these Schur algebras and show that with this involution operator there is only one $C^*$-algebra among these classes of Banach algebras. Furthermore, we show the equivalence of a condition on the Schur multiplier norm and the existence of $C^*$-algebra.
Classification :
Primary 15A18; Secondary 47A10.
@article{BMMS_2011_34_1_a17,
author = {Pachara Chaisuriya},
title = {A {\(C^*\)-Algebra} on {Schur} {Algebras}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a17/}
}
Pachara Chaisuriya. A \(C^*\)-Algebra on Schur Algebras. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a17/