On Conharmonic Curvature Tensor in $K$-contact and Sasakian Manifolds
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Some necessary and/or sufficient condition(s) for $K$-contact and/or Sasakian manifolds to be quasi conharmonically flat, $\xi $-conharmonically flat and $\varphi $-conharmonically flat are obtained. In last, it is proved that a compact $\varphi $-conharmonically flat $K$-contact manifold with regular contact vector field is a principal $S^{1}$-bundle over an almost Kaehler space of constant holomorphic sectional curvature $\left( 3-\frac{2}{2n-1}\right)$.
Classification : 53C25, 53D10, 53D15.
@article{BMMS_2011_34_1_a15,
     author = {Mohit Kumar Dwivedi and Jeong-Sik Kim},
     title = {On {Conharmonic} {Curvature} {Tensor} in {\(K\)-contact} and {Sasakian} {Manifolds}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a15/}
}
TY  - JOUR
AU  - Mohit Kumar Dwivedi
AU  - Jeong-Sik Kim
TI  - On Conharmonic Curvature Tensor in \(K\)-contact and Sasakian Manifolds
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a15/
ID  - BMMS_2011_34_1_a15
ER  - 
%0 Journal Article
%A Mohit Kumar Dwivedi
%A Jeong-Sik Kim
%T On Conharmonic Curvature Tensor in \(K\)-contact and Sasakian Manifolds
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a15/
%F BMMS_2011_34_1_a15
Mohit Kumar Dwivedi; Jeong-Sik Kim. On Conharmonic Curvature Tensor in \(K\)-contact and Sasakian Manifolds. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a15/