The Existence and Uniqueness of Positive Solutions for Integral Boundary Value Problems
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
This paper investigates the existence and uniqueness of $C[0,1]$ positive solutions for a second order integral boundary value problem. We mainly use the method of lower and upper solutions and the maximal principle. Our nonlinearity $f(t,u)$ may be singular at $u=0,\ t=0,\ 1.$
Classification :
34B16, 34B18.
@article{BMMS_2011_34_1_a13,
author = {Jinxiu Mao and Zengqin Zhao and Naiwei Xu},
title = {The {Existence} and {Uniqueness} of {Positive} {Solutions} for {Integral} {Boundary} {Value} {Problems}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2011},
volume = {34},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a13/}
}
TY - JOUR AU - Jinxiu Mao AU - Zengqin Zhao AU - Naiwei Xu TI - The Existence and Uniqueness of Positive Solutions for Integral Boundary Value Problems JO - Bulletin of the Malaysian Mathematical Society PY - 2011 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a13/ ID - BMMS_2011_34_1_a13 ER -
Jinxiu Mao; Zengqin Zhao; Naiwei Xu. The Existence and Uniqueness of Positive Solutions for Integral Boundary Value Problems. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a13/