Central Armendariz Rings
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

We introduce the notion of central Armendariz rings which are a generalization of Armendariz rings and investigate their properties. We show that the class of central Armendariz rings lies strictly between classes of Armendariz rings and abelian rings. For a ring $R$, we prove that $R$ is central Armendariz if and only if the polynomial ring $R[x]$ is central Armendariz if and only if the Laurent polynomial ring $R[x, x^{-1}]$ is central Armendariz. Moreover, it is proven that if $R$ is reduced, then $R[x]/(x^{n})$ is central Armendariz, the converse holds if $R$ is semiprime, where $(x^n)$ is the ideal generated by $x^n$ and $n\geq 2$. Among others we also show that $R$ is a reduced ring if and only if the matrix ring $T_{n}^{n-2}(R)$ is central Armendariz, for a natural number $n \geq 3$ and $k=[n/2]$.
Classification : 16U80.
@article{BMMS_2011_34_1_a11,
     author = {Nazim Agayev and Gonca G\"ung\"oroglu and A. Harmanci and S. Halicioglu},
     title = {Central {Armendariz} {Rings}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a11/}
}
TY  - JOUR
AU  - Nazim Agayev
AU  - Gonca Güngöroglu
AU  - A. Harmanci
AU  - S. Halicioglu
TI  - Central Armendariz Rings
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a11/
ID  - BMMS_2011_34_1_a11
ER  - 
%0 Journal Article
%A Nazim Agayev
%A Gonca Güngöroglu
%A A. Harmanci
%A S. Halicioglu
%T Central Armendariz Rings
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a11/
%F BMMS_2011_34_1_a11
Nazim Agayev; Gonca Güngöroglu; A. Harmanci; S. Halicioglu. Central Armendariz Rings. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a11/