On the Distance Paired-Domination of Circulant Graphs
Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let $G=(V,E)$ be a graph without isolated vertices. A set $D\subseteq V$ is a $d$- distance paired-dominating set of $G$ if $D$ is a $d$-distance dominating set of $G$ and the induced subgraph $G=(V,E)$ has a perfect matching. The minimum cardinality of a $d$-distance paired-dominating set for graph $G$ is the $d$- distance paired-domination number , denoted by $\gamma_p^{d}(G)$. In this paper, we study the $d$- distance paired-domination number of circulant graphs $C(n;\{1,k\})$ for $2\leq k\leq 4$. We prove that for $k=2$, $n\geq 5$ and $d\geq 1$, $\gamma_p^{d}(C(n;\{1,k\}))=2\left\lceil \frac{n}{2kd+3}\right\rceil,$ for $k=3$, $n\geq 7$ and $d\geq 1$, $\gamma_p^{d}(C(n;\{1,k\}))=2\left\lceil \frac{n}{2kd+2}\right\rceil,$ and for $k=4$ and $n\geq 9$, (i) if $d=1$, then $\begin{array}{llll} \gamma_p(C(n;\{1,k\}))= \left\{\begin{array}{llll} 2\lceil \frac{3n}{23}\rceil+2, \mbox{if } n\equiv 15,22 \mbox{ (mod } 23); \\ 2\lceil \frac{3n}{23}\rceil, \mbox{otherwise } \\ \end{array} \right . \end{array}$ (ii) if $d\geq 2$, then $\begin{array}{llll} \gamma_p^{d}(C(n;\{1,k\}))= \left\{\begin{array}{llll} 2\lceil \frac{2n}{4kd+1}\rceil+2, \mbox{if } n\equiv 2kd,4kd-1,4kd\\ \mbox{ (mod } 4kd+1)\\ 2\lceil \frac{2n}{4kd+1}\rceil, \mbox{otherwise. } \\ \end{array} \right. \end{array}$
Classification : 05C69, 05C12.
@article{BMMS_2011_34_1_a0,
     author = {Haoli Wang and Xirong Xu and Yuansheng Yang and Guoqing Wang and Kai L\"u},
     title = {On the {Distance} {Paired-Domination} of {Circulant} {Graphs}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2011},
     volume = {34},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a0/}
}
TY  - JOUR
AU  - Haoli Wang
AU  - Xirong Xu
AU  - Yuansheng Yang
AU  - Guoqing Wang
AU  - Kai Lü
TI  - On the Distance Paired-Domination of Circulant Graphs
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2011
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a0/
ID  - BMMS_2011_34_1_a0
ER  - 
%0 Journal Article
%A Haoli Wang
%A Xirong Xu
%A Yuansheng Yang
%A Guoqing Wang
%A Kai Lü
%T On the Distance Paired-Domination of Circulant Graphs
%J Bulletin of the Malaysian Mathematical Society
%D 2011
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a0/
%F BMMS_2011_34_1_a0
Haoli Wang; Xirong Xu; Yuansheng Yang; Guoqing Wang; Kai Lü. On the Distance Paired-Domination of Circulant Graphs. Bulletin of the Malaysian Mathematical Society, Tome 34 (2011) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2011_34_1_a0/