The Partial-Isometric Crossed Products of c0by the Forward and the Backward Shifts
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let ( A , α ) be a system consisting of a C *-algebra A and an extendible endomorphism α on A . We consider the partial-isometric crossed product generated by a copy of A and a power partial isometry. We show that for an extendible α -invariant ideal I in A , the quotient of partial-isometric crossed products is isomorphic to the partial-isometric crossed product of the quotient algebra. Then we use this to give concrete descriptions of the partial-isometric crossed products of c 0 by the forward shift and the backward shift.
Classification : Primary 46L55; Secondary 06F15, 47B35.
@article{BMMS_2010_33_3_a14,
     author = {Sriwulan Adji and Abbas Hosseini},
     title = {The {Partial-Isometric} {Crossed} {Products} of c0by the {Forward} and the {Backward} {Shifts}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2010},
     volume = {33},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a14/}
}
TY  - JOUR
AU  - Sriwulan Adji
AU  - Abbas Hosseini
TI  - The Partial-Isometric Crossed Products of c0by the Forward and the Backward Shifts
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2010
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a14/
ID  - BMMS_2010_33_3_a14
ER  - 
%0 Journal Article
%A Sriwulan Adji
%A Abbas Hosseini
%T The Partial-Isometric Crossed Products of c0by the Forward and the Backward Shifts
%J Bulletin of the Malaysian Mathematical Society
%D 2010
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a14/
%F BMMS_2010_33_3_a14
Sriwulan Adji; Abbas Hosseini. The Partial-Isometric Crossed Products of c0by the Forward and the Backward Shifts. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a14/