Normality Criterion Concerning Sharing Functions II
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let F be a family of meromorphic functions in a domain D , and k be a positive integer, and let φ( z )( 0,∞) be a meromorphic function in D such that ƒ and φ( z ) have no common zeros for all ƒ ∈ F and φ ( z ) has no simple zeros in D , and all poles of φ ( z ) have multiplicity at most k . If, for each ƒ ∈ F , all zeros of ƒ have multiplicity at least k + 1, ƒ ( k ) ( z ) = 0 ⇒ ƒ ( z ) = 0, ƒ ( k ) ( z ) = φ ( z ) ⇒ ƒ ( z ) = φ ( z ), then F is normal in D . This result improves and extends related results due to Schwick, Fang, Fang-Zalcman and Xu, et al.
Classification :
30D35.
@article{BMMS_2010_33_3_a13,
author = {Jiying Xia and Yan Xu},
title = {Normality {Criterion} {Concerning} {Sharing} {Functions} {II}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2010},
volume = {33},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a13/}
}
Jiying Xia; Yan Xu. Normality Criterion Concerning Sharing Functions II. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a13/