Flat Surfaces in the Euclidean Space E3with Pointwise 1-Type Gauss Map
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this article we prove that a flat nonplanar surface in the Euclidean space with pointwise 1-type Gauss map of the second kind is either a right circular cone or a cylinder such that the curvature of the base curve satisfies a specific differential equation. We conclude that there is no tangent developable surface in with pointwise 1-type Gauss map of the second kind.
Classification :
53B25, 53C40.
@article{BMMS_2010_33_3_a12,
author = {Ugur Dursun},
title = {Flat {Surfaces} in the {Euclidean} {Space} {E3with} {Pointwise} {1-Type} {Gauss} {Map}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2010},
volume = {33},
number = {3},
url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a12/}
}
Ugur Dursun. Flat Surfaces in the Euclidean Space E3with Pointwise 1-Type Gauss Map. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a12/