Flat Surfaces in the Euclidean Space E3with Pointwise 1-Type Gauss Map
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this article we prove that a flat nonplanar surface in the Euclidean space with pointwise 1-type Gauss map of the second kind is either a right circular cone or a cylinder such that the curvature of the base curve satisfies a specific differential equation. We conclude that there is no tangent developable surface in with pointwise 1-type Gauss map of the second kind.
Classification : 53B25, 53C40.
@article{BMMS_2010_33_3_a12,
     author = {Ugur Dursun},
     title = {Flat {Surfaces} in the {Euclidean} {Space} {E3with} {Pointwise} {1-Type} {Gauss} {Map}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2010},
     volume = {33},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a12/}
}
TY  - JOUR
AU  - Ugur Dursun
TI  - Flat Surfaces in the Euclidean Space E3with Pointwise 1-Type Gauss Map
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2010
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a12/
ID  - BMMS_2010_33_3_a12
ER  - 
%0 Journal Article
%A Ugur Dursun
%T Flat Surfaces in the Euclidean Space E3with Pointwise 1-Type Gauss Map
%J Bulletin of the Malaysian Mathematical Society
%D 2010
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a12/
%F BMMS_2010_33_3_a12
Ugur Dursun. Flat Surfaces in the Euclidean Space E3with Pointwise 1-Type Gauss Map. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 3. http://geodesic.mathdoc.fr/item/BMMS_2010_33_3_a12/