The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let λ = √ D where D is a square free integer such that D = m 2 + 1 for m = 1, 3, 4, 5, …, or D = n 2 - 1 for n = 2, 3, 4, 5, …. Also, let H ( D λ) be the Hecke group associated to λ. In this paper, we show that the units in H (λ) are infinite pure periodic λ-continued fraction for a certain set of integer D , and hence can not be cusp points.
Classification :
20H10, 11K55.
@article{BMMS_2010_33_2_a3,
author = {R. Sahin and S. Ikikardes and \"O. Koruoglu and I. N. Cang\"ul},
title = {The {Connections} {Between} {Continued} {Fraction} {Representations} of {Units} and {Certain} {Hecke} {Groups}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2010},
volume = {33},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/}
}
TY - JOUR AU - R. Sahin AU - S. Ikikardes AU - Ö. Koruoglu AU - I. N. Cangül TI - The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups JO - Bulletin of the Malaysian Mathematical Society PY - 2010 VL - 33 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/ ID - BMMS_2010_33_2_a3 ER -
%0 Journal Article %A R. Sahin %A S. Ikikardes %A Ö. Koruoglu %A I. N. Cangül %T The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups %J Bulletin of the Malaysian Mathematical Society %D 2010 %V 33 %N 2 %U http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/ %F BMMS_2010_33_2_a3
R. Sahin; S. Ikikardes; Ö. Koruoglu; I. N. Cangül. The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/