The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let λ = √ D where D is a square free integer such that D = m 2 + 1 for m = 1, 3, 4, 5, …, or D = n 2 - 1 for n = 2, 3, 4, 5, …. Also, let H ( D λ) be the Hecke group associated to λ. In this paper, we show that the units in H (λ) are infinite pure periodic λ-continued fraction for a certain set of integer D , and hence can not be cusp points.
Classification : 20H10, 11K55.
@article{BMMS_2010_33_2_a3,
     author = {R. Sahin and S. Ikikardes and \"O. Koruoglu and I. N. Cang\"ul},
     title = {The {Connections} {Between} {Continued} {Fraction} {Representations} of {Units} and {Certain} {Hecke} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2010},
     volume = {33},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/}
}
TY  - JOUR
AU  - R. Sahin
AU  - S. Ikikardes
AU  - Ö. Koruoglu
AU  - I. N. Cangül
TI  - The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2010
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/
ID  - BMMS_2010_33_2_a3
ER  - 
%0 Journal Article
%A R. Sahin
%A S. Ikikardes
%A Ö. Koruoglu
%A I. N. Cangül
%T The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2010
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/
%F BMMS_2010_33_2_a3
R. Sahin; S. Ikikardes; Ö. Koruoglu; I. N. Cangül. The Connections Between Continued Fraction Representations of Units and Certain Hecke Groups. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a3/